1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
winstonfeq515 edited this page 2025-05-29 23:12:22 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and hb9lc.org SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that utilizes reinforcement finding out to boost reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its reinforcement knowing (RL) action, which was utilized to refine the model's actions beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, wiki.asexuality.org eventually improving both relevance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, implying it's equipped to break down complex questions and reason through them in a detailed manner. This guided reasoning process allows the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured responses while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation model that can be incorporated into various workflows such as representatives, logical thinking and data analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion parameters, making it possible for effective reasoning by routing questions to the most relevant specialist "clusters." This method permits the design to concentrate on various issue domains while maintaining overall efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to imitate the habits and thinking patterns of the larger DeepSeek-R1 design, using it as a teacher model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and evaluate designs against essential safety criteria. At the time of composing this blog site, for DeepSeek-R1 on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit increase, develop a limit increase request and reach out to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid hazardous content, and assess models against key security criteria. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.

The design detail page supplies necessary details about the model's capabilities, rates structure, and execution standards. You can discover detailed use guidelines, consisting of sample API calls and code snippets for combination. The design supports numerous text generation jobs, including content creation, code generation, and concern answering, using its reinforcement learning optimization and CoT reasoning abilities. The page likewise includes release options and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, go into a number of circumstances (in between 1-100). 6. For example type, pick your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and infrastructure settings, including virtual personal cloud (VPC) networking, service function consents, and file encryption settings. For many utilize cases, the default settings will work well. However, for production releases, you might wish to review these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive user interface where you can experiment with various prompts and change design specifications like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal outcomes. For instance, content for reasoning.

This is an outstanding way to check out the design's thinking and text generation capabilities before incorporating it into your applications. The playground offers immediate feedback, assisting you comprehend how the model reacts to different inputs and letting you tweak your prompts for optimal outcomes.

You can rapidly test the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference using a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical methods: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the technique that finest suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model web browser displays available designs, with details like the company name and model capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals essential details, larsaluarna.se consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the model details page.

    The design details page consists of the following details:

    - The model name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the model, it's recommended to examine the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, use the automatically created name or produce a customized one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of instances (default: 1). Selecting appropriate instance types and counts is important for cost and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the model.

    The deployment procedure can take several minutes to complete.

    When release is complete, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning demands through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is total, you can conjure up the design utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and mediawiki.hcah.in run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To avoid undesirable charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases.
  5. In the Managed deployments section, find the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct innovative options using AWS services and sped up compute. Currently, he is concentrated on establishing methods for fine-tuning and optimizing the inference efficiency of large language models. In his downtime, Vivek enjoys hiking, enjoying movies, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building services that help clients accelerate their AI journey and unlock business value.